Loops and multiple edges in modularity maximization of networks.
نویسندگان
چکیده
The modularity maximization model proposed by Newman and Girvan for the identification of communities in networks works for general graphs possibly with loops and multiple edges. However, the applications usually correspond to simple graphs. These graphs are compared to a null model where the degree distribution is maintained but edges are placed at random. Therefore, in this null model there will be loops and possibly multiple edges. Sharp bounds on the expected number of loops, and their impact on the modularity, are derived. Then, building upon the work of Massen and Doye, but using algebra rather than simulation, we propose modified null models associated with graphs without loops but with multiple edges, graphs with loops but without multiple edges and graphs without loops nor multiple edges. We validate our models by using the exact algorithm for clique partitioning of Grötschel and Wakabayashi.
منابع مشابه
Walk-modularity and community structure in networks
Modularity maximization has been one of the most widely used approaches in the last decade for discovering community structure in networks of practical interest in biology, computing, social science, statistical mechanics, and more. Modularity is a quality function that measures the difference between the number of edges found within clusters minus the number of edges one would statistically ex...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملModularity based community detection in heterogeneous networks
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one type of nodes, very few community detection techniques have been developed for heterogeneous networks. In this paper, we propose a modularity based co...
متن کاملA locally optimal hierarchical divisive heuristic for bipartite modularity maximization
Given a set of entities, cluster analysis aims at finding subsets, also called clusters or communities or modules, entities of which are homogeneous and well separated. In the last ten years clustering on networks, or graphs, has been a subject of intense study. Edges between pairs of vertices within the same cluster should be relatively dense, while edges between pairs of vertices in different...
متن کاملAdaptive Modularity Maximization via Edge Weighting Scheme
Modularity maximization is one of the state-of-the-art methods for community detection that has gained popularity in the last decade. Yet it suffers from the resolution limit problem by preferring under certain conditions large communities over small ones. To solve this problem, we propose to expand the meaning of the edges that are currently used to indicate propensity of nodes for sharing the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2010